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Embedded System Security with Rust

Abstract: Real-time embedded systems have to meet a combination of re-
quirements that are in deep tension: they are expected to deliver timely
results, observing strict deadlines, all using only very limited resources,
computing power and energy. To this day, the most common programming
language in this environment is C/C++ because of its zero-cost abstractions
and fine control over memory layout. With the upcoming communication
ability through network interfaces, an additional requirement gained in im-
portance: security. Unfortunately, C/C++ supports some secure software
design principles only rudimentary. Too many very severe vulnerabilities
are directly related to the fact that C/C++ does not guarantee memory safe-
ty. To exemplify this, the prominent Heartbleed vulnerability is discussed
in terms of causes, technical details and impact.

A new programming language Rust, originally designed to develop the suc-
cessor of the Firefox web browser, comes with a couple of innovative fea-
tures. The author argues that Rust, inter alia for its memory safety, is well
suited to succeed C/C++ in embedded system programming. This is demon-
strated by reproducing the Heartbleed vulnerability in Rust and by observ-
ing how the system responds to this kind of attacks.

Keywords: Embedded System Security, Heartbleed Bug, Rust Lan-
guage
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1. Introduction
Although embedded systems have existed since the early age of computing,
system security was not an issue in the beginning. Originally, embedded
systems had no network connection and no interface to the outside world
beyond their system operators. Of course, also in those times, programs
had flaws but some errors never did show up in the production cycle. For
some errors,the operators found work-arounds and only very few actually
had to be fixed by the manufacturer after device delivery.

The situation dramatically changed with the upcoming of network inter-
faces on embedded devices. Before, only well-meaning operators could in-
teract with the software. Now, network interfaces expose parts of the API
to everyone who is able to send a network package to the target system.
As all systems are interconnected these days it is possible to attack any
embedded device even through well protected networks. A very impressive
example is the Stuxnet exploit discovered in 2010, used to destroy up to
one-fifth of Iranian centrifuges and to delay that country’s nuclear ambi-
tions. One of the main attack vectors was a vulnerability in Windows called
CVE-2010-2568. It took Microsoft not less than 4 years to release a patch
MS15-020 which is believed to finally address the issue [1].

In pre-network-times, the impact of software flaws in embedded systems
was usually limited to impair some secondary functions. For example, I once
had a car with a software flaw that switched on the ceiling light under some
non-reproducible coinciding events. For the driver this flaw was annoying
but without any further consequences. Or, let’s consider a software flaw in
a television set that impairs a secondary function under certain conditions.
The same television set once connected to the Internet might be hacked
using this vulnerability. The attacker then installs some listening software
in your living room or might use the TV as point of departure for further
attacks. Overall, the upcoming of the Internet of Things will put more and
more interconnected computers into all sorts of consumer devices - and our
living rooms.

2. Embedded Devices Are Vulnerable
Why does the presence of a network interface on an embedded device make
such a difference? Because it potentially connects people with malicious
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intent to our device. A well-meaning operator tries to work-around software
flaws while attackers systematically scan our systems to find and exploit
vulnerabilities. Consequently, when an Internet connection is supported,
security is of utmost concern.

Schneier [2] compares this situation with what we have seen in the 1990s
when the insecurity of personal computers was reaching crisis levels: “Soft-
ware and operating systems were riddled with security vulnerabilities, and
there was no good way to patch them. Companies were trying to keep vul-
nerabilities secret, and not releasing security updates quickly. And when
updates were released, it was hard — if not impossible — to get users to
install them”. How well this applies to today’s embedded devices is best
shown with home routers. These embedded systems are more powerful then
the PCs of the 1990s and have became as such a popular target for attack-
ers. A recent case concerned 1,3 Mio. Vodaphone clients in Germany [3]:
A so called WPS Pixie Dust vulnerability [4] found in a Wi-Fi setup function
allows attackers to hack the routers WPA password.

The security researchers Runa Sandvik and Michael Auger managed to
hack a sniper rifle via it’s Wifi-interface [5]: The TP750 is a computer as-
sisted self aiming long range sniper rifle. Its targeting system guarantees
almost foolproof accuracy by firing not when the shooter first pulls the trig-
ger but instead only when the barrel is perfectly lined up with the target.
A chain of vulnerabilities allowed the attacker to take control over the self-
aiming parameters and to deviate the bullet to any arbitrary sufficiently
close target.

3. Causes

Schneier [2] argues that embedded devices are insecure mainly because
the software is often unpatched and much older than the last maintained
branches of the software deployed. It is important to note that there are
many entities involved in a typical embedded system design, manufactur-
ing, and usage chain. Often neither the chip nor the device manufacturer
is motivated to maintain his firmware and to publish updates. As there is
generally no patch distribution infrastructure in place, the user has to in-
stall the patch manually. Even if a patch is available it is hard to get users
to install it, partly because they are is not aware of patch’s availability, and
partly because the firmware update procedure is complicated.
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Will the situation change? From the manufacturer’s point of view security
is a costly service. Finding the right balance between cost and benefit of
security is not always easy. But more and more users have become aware of
the risks. Also most of the big market leaders have experienced that hacked
end user devices cause a considerable damage to the brand’s reputation.
Such a loss of reputation is then very costly to recover. But the situation
may change soon: Big telecommunication companies like Deutsche-Tele-
com and others already improved their patch policy and distribute vulner-
ability reports and patches for their routers. Let’s hope that the manufac-
turing of other embedded devices follow soon.

Manufacturers usually complain that their profit margin is too small and
consumers are not ready to pay for security. This might be true in many
cases but in accordance with fundamental marketing principles, complex
services have to be explained to the customer! So far no one really does.
Also a non-tech-savvy user is able to understand that error free software
does not exist. So instead of hiding software flaws, manufacturers should
advertise their bug fixing infrastructure and service with confidence.

Complex software without regular security-bug-fixes is in a similar bad
state as political systems without regular disclosure of corruption cases.

4. Embedded System Development
Kopetz [6, p. 18] lists a number of distinctive characteristics that influences
the embedded real-time system development process:

• Mass production market
The cost per unit must be as low as possible and efficient memory and
processor utilization is of concern. In order to reduce costs, embedded
systems are highly specialized i.e. designed to meet a limited well de-
fined set of requirements.

• Static structure
The known priory environment is analysed at design time and consid-
ered to be static. This allows us to simplify the software, increases the
robustness and improves the efficiency of the embedded device.

• Maintenance strategy
The hard- and software of many systems is not designed for maintenance.

• Ability to communicate
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More and more intelligent products are required to communicate over
networks with some larger system.

• Limited amount of energy
Many devices are powered by batteries.

All the above design principles are concurrent with security requirements.
For example, in order to minimize production costs, embedded systems are
highly specialized machines: For a limited set of inputs they produce a well
defined output. In contrast, secure machines are generalistic. They must
deal securely with all possible network inputs. Another important require-
ment is low energy consumption, often limiting the computing power and
thus excluding the deployment of security software like intrusion detection
or malware scanner on most embedded systems.

The art of system design consists in finding well-balanced priorities in meet-
ing different partly concurrent requirements: Figure 1, “Dependability and
security attributes” shows the meta-functional attributes of a computer sys-
tem related to dependability as quality of service and to security compris-
ing confidentiality, integrity and availability [7, Fig. 2.1]. Most designs pri-
oritize the attribute availability because it is the most obvious to the client.
It does not mean that the other attributes are fully ignored, but in general
much less production resources are deployed to meet them.

Figure 1. Dependability and security attributes

• Legend Figure 1, “Dependability and security attributes”: Availability:
readiness for correct service. Reliability: continuity of correct service.
Safety: absence of catastrophic consequences on the user and the en-
vironment. Integrity: absence of improper system alterations. Maintain-
ability: ability to undergo modifications, and repairs. Confidentiality: i.e.,
the absence of unauthorized disclosure of information.
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The most neglected attribute of embedded systems is confidentiality. His-
torically non-significant, it gained importance with communication abilities
through network interfaces. Nowadays, a loss of sensitive data can have
disastrous consequences as shown in Section 5, “The Heartbleed Vulnera-
bility”.

What can be done to make our embedded systems more secure? First, the
system should be designed at any stage to deal with malicious input. To in-
tegrate this idea systematically in the development process, many securi-
ty extensions to system modelling languages have been suggested: BPNM,
Secure Tropos, Misuse Cases, Mal-activity diagrams, UMLsec, SecureUML
and Trust Trade-off Analysis are some examples.

On the programming side many modern languages provide desirable secu-
rity features like guaranteed memory safety or data race freedom. How-
ever, none of these was yet able to impose higher margins on the embed-
ded systems market. According to a recent survey among developers about
the languages used for the current project [8], 53% still use C++ followed
by 52% using C. The researchers expect that “the growth of C++ to re-
main strong in the coming years, as object-oriented languages gain further
acceptance within the development of safety-critical systems.” C was de-
signed in the 1970s by Dennis Ritchie at AT&T Bell Labs. Though never
intended for embedded use, C remains the most widely used embedded
programming language. C++ is an extension to the C language providing
inter alia object oriented features. Because of their common language ele-
ments both languages share the same drawbacks. Neither C++ nor C pro-
vide guaranteed memory safety: Memory corruption bugs in software writ-
ten in low-level languages like C or C++ are one of the oldest problems in
computer security. The lack of safety in these languages allows attackers
to alter the program’s behavior or take full control over it by hijacking its
control flow. Even though the problem is well studied and partial remedia-
tions have been proposed, none found a broader acceptance [9, p. 48].

Considering the still widespread use of C and C++ ,especially in embedded
systems, it is not surprising that memory safety related weaknesses still
rank in top positions in vulnerability statistics. The classic “buffer overflow”
for example reached position 3 in the CWE/SANS Top 25 of 2011. Table 1,
“Common weaknesses in C/C++ that affect memory” shows the most com-
mon C/C++ memory safety bugs.
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Table 1. Common weaknesses in C/C++ that affect memory

CWE ID Name

119 Improper Restriction of Operations within the
Bounds of a Memory Buffer

120 Buffer Copy without Checking Size of Input ('Clas-
sic Buffer Overflow')

125 Out-of-bounds Read

126 Buffer Over-read ('Heartbleed bug')

122 Heap-based Buffer Overflow

129 Improper Validation of Array Index

401 Improper Release of Memory Before Removing Last
Reference ('Memory Leak')

415 Double Free

416 Use After Free

591 Sensitive Data Storage in Improperly Locked Mem-
ory

763 Release of Invalid Pointer or Reference

All memory-related problems in C and C++ come from the fact that C pro-
grams can unrestrainedly manipulate pointer to variables and objects out-
side of their memory location and their lifetime. This is why memory safe
languages like Java do not give programmers direct and uncontrolled ac-
cess to pointers. The Java compiler achieves this with a resource costly
runtime and a garbage collector. The additional costs in terms of resources
eliminate this solution for most real-time embedded applications.

For many years program efficiency and memory safety seemed to be an
insurmountable discrepancy. Now, after 10 years of development, a new
programming language called Rust promises to cope with this balancing
act. Rust's main innovation is the introduction of semantics defining data
ownership. This new programming paradigm allows the compiler to guar-
antee memory safety at compile-time. Thus no resource costly runtime is
needed for that purpose. In Rust most of the weaknesses listed in Table 1,
“Common weaknesses in C/C++ that affect memory” are already detected
at compile time. Moreover Rust's memory safety guarantees that none of
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these weaknesses can result in an undefined system state or provoke data
leakage.

To illustrate the matter we will analyse a typical C/C++ memory safety re-
lated bug in Section 5, “The Heartbleed Vulnerability”. Then we reproduce
the erroneous code in Rust and observe the system’s response in Section 6,
“Could Heartbleed Have Happened With Rust?”

5. The Heartbleed Vulnerability
The Heartbleed vulnerability is an excellent example of a typical memory
safety related weakness of the C/C++ language: A “CWE-126: Buffer Over-
read” (cf. Table 1, “Common weaknesses in C/C++ that affect memory”).

5.1. The Bug of the Century

It sounds like science fiction: 4 missing lines in a computer program com-
promise at least one quarter of the Internet’s cryptographic infrastructure!
The proportion of vulnerable Alexa Top 1 Million HTTPS-enabled websites
have been estimated as lying between 24–55% at the time of the so called
Heartbleed vulnerability disclosure [10, p. 4]. Another study found “that
the heartbeat extension was enabled on 17.5% of SSL sites, accounting for
around half a million certificates issued by trusted certificate authorities.
These certificates are consequently vulnerable to being spoofed (through
private key disclosure), allowing an attacker to impersonate the affected
websites without raising any browser warnings [11].”

The Heartbleed vulnerability, listed as CVE-2014-0160 , was publicly dis-
closed on 04/07/2014 with the following statement [12]:

The Heartbleed Bug is a serious vulnerability in the popular
OpenSSL cryptographic software library. This weakness allows
stealing the information protected, under normal conditions, by
the SSL/TLS encryption used to secure the Internet. SSL/TLS
provides communication security and privacy over the Internet
for applications such as web, email, instant messaging (IM) and
some virtual private networks (VPNs).

The Heartbleed bug allows anyone on the Internet to read the
memory of the systems protected by the vulnerable versions of
the OpenSSL software. This compromises the secret keys used
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to identify the service providers and to encrypt the traffic, the
names and passwords of the users and the actual content. This
allows attackers to eavesdrop on communications, steal data
directly from the services and users and to impersonate ser-
vices and users.

The bug had been introduced with a minor SSL/TLS protocol extension
called Heartbeat in January 2012. From the beginning the vulnerability had
been widely exploited: For example, the U.S. National Security Agency NSA
knew for at least two years about the Heartbleed bug, and regularly used
it to gather critical intelligence [13]. As another example, a group of Chi-
nese hackers referred to as “APT18” used Heartbleed to bypass the securi-
ty systems of the US “Community Health Systems” company and stole 4.5
million patient records [14]. Estimating how widely Heartbleed was and is
being exploited is difficult as the attack leaves no trace. The stolen keys are
usually stored for later usage in more complex attack scenarios, as Raxis,
an independent penetration testing firm, has demonstrated [15].

Even though the Heartbleed patch itself has only a handful of characters,
its recovery is tremendously expensive and is far from complete. Not only
all keys and certificates on millions of servers have to be renewed, also all
secondary key material is affected: for example all user passwords must be
considered compromised and therefore have to be replaced. Venafi [16] es-
timates that in April 2015, one year after the disclosure of Heartbleed, 74%
of Global 2000 organisations are still exposed to attacks due to incomplete
remediation. This is only 2% less then in August 2014!

Bugs in software come and go, but Heartbleed is unique in many ways:
Never has a software bug has left so many private keys and other secrets
exposed to the Internet for such a long time so easy to exploit without leav-
ing any trace.

5.2. The Heartbeat Protocol Extension

The bug’s name “Heartbleed” derives from Heartbeat a protocol extension
to the TLS/DTLS protocol introduced in January 2012 as defined in RFC
6520 [17]. It allows a SSL/TLS client to test if a remote connection is still
alive without disturbing the data stream. The client sends an TLS1_HB_RE-
QUEST  with a nonce payload string. The server reads this string and echoes
it back to the client. The client finally compares its own sent nonce payload
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string with the received payload string from the sever. If they are equal,
the connection is still alive.

The TLS1_HB_REQUEST  package sent from the client contains a field called
payload  in the source code (Table  2, “Vulnerable Heartbeat code in
C”) that indicates the length of the payload string. This length is used
to determine how many Bytes the server needs to copy in the TLS1_H-
B_RESPONSE  package by executing the memcpy -function in line 6. Fig-
ure 2, “TLS Heartbeat protocol” shows how the server assembles a regu-
lar TSL1_HB_RESPONSE  package based on the received TSL1_HB_REQUEST
package. In order to simplify the graphic, the random padding of 16 Bytes
which are systematically appended to both packages is not shown.

The code in Table 2, “Vulnerable Heartbeat code in C” implements mainly
two functions: the lines 1, 2 and 6 deserialise the incoming TLS1_HB_RE-
QUEST  package and the lines 3 to 7 serialise the outgoing TLS1_HB_RE-
QUEST  package.

Figure 2. TLS Heartbeat protocol

5.3. How Does the Heartbleed-Exploit Work?

The so called Heartbleed vulnerability is an implementation problem, i. e.
programming mistake in the very popular OpenSSL library [18] resulting
from improper input validation due to a missing bounds check. It is impor-
tant to note that there is no design flaw in the Heartbeat protocol itself.

The programming mistake was introduced with the first version of the
Heartbeat feature committed in January 2012. Table 2, “Vulnerable Heart-
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beat code in C” shows the details of the vulnerable Heartbeat-commit in-
troducing the so called Heartbleed-vulnerability.

Exploiting the Heartbleed-vulnerability is very simple: the attacker sends a
TLS1_HB_REQUEST -package with a spoofed payload -length field as shown
in Figure 3, “TLS Heartbeat with spoofed payload-length-field”. Here the
payload -length needs to be larger than the actual payload string for exam-
ple 0xffff . OpenSSL receives the flawed package and deserialises it (cf.
lines 1, 2 and 6 in Table 2, “Vulnerable Heartbeat code in C”). Because of a
missing validity check the spoofed deserialised payload -length (cf. line2)
is passed directly to the memcpy(bp, pl, payload)  instruction (line 6)
and is there used to determine how many Bytes are to be copied and sent
back to the attacker. Thus a Buffer-Overread occurs and discloses 64KiB of
internal OpenSSL memory.

From the functional point of view Heartbleed is best classified as a
CWE-502: Deserialization of Untrusted Data weakness: “The application
deserializes untrusted data without sufficiently verifying that the resulting
data will be valid.”

Figure 3. TLS Heartbeat with spoofed payload-length-field

Table 2. Vulnerable Heartbeat code in C

SHA 4817504d069b4c5082161b02a22116ad75f822b1

Author Dr. Stephen Henson (Sun 01 Jan 2012 00:59:57 EET)

Com-
miter

Dr. Stephen Henson (Sun 01 Jan 2012 00:59:57 EET)
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Sub-
ject

PR: 2658 Submitted by: Robin Seggelmann Reviewed by: steve

unsigned char *p = &s->s3->rrec.data[0], *pl;

unsigned short hbtype;

unsigned int payload;

unsigned int padding = 16;

hbtype = *p++;      

n2s(p, payload);    

pl = p;

if (hbtype == TLS1_HB_REQUEST)

        {

        unsigned char *buffer, *bp;

        int r;

        buffer = OPENSSL_malloc(1 + 2 + payload + padding); 

        bp = buffer;

        *bp++ = TLS1_HB_RESPONSE;    

        s2n(payload, bp);            

        memcpy(bp, pl, payload);     

        r = ssl3_write_bytes(s, TLS1_RT_HEARTBEAT, buffer,

    3 + payload + padding);  

Read type Byte from TLS Request .
Read payload -length-field form TSL Request . Note that there is
no previous check if the actual payload string in TLS Request
is as long as the payload -length field pretends it is!
Allocate memory for the TLS Response .
Write the type in the response buffer.
Serialise the payload -length into the response buffer.
Copy payload -length number of Bytes from the request buffer into
the response buffer.
→ Buffer over-read vulnerability!

Source: [18, openssl-1.0.1/ssl_t1_lib.c , lines=2405-2468]
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5.4. The Heartbleed-Patch

Figure 4, “Heartbleed patch” shows how trivially the bug can be fixed. The
patch introduces the missing validity check comprising two if  statements.

Figure 4. Heartbleed patch

The bugfix as shown in Table 3, “Patched Heartbeat code in C” in detail:
The first if  statement checks if the incoming TLS1_HB_REQUEST  is as least
as long as the its minimum required length and the second if  statement
checks if the payload string is at least a long the payload -length field pre-
tends.

Table 3. Patched Heartbeat code in C

SHA 96db9023b881d7cd9f379b0c154650d6c108e9a3

Author Dr. Stephen Henson (Sun 06 Apr 2014 02:51:06 EEST)

Com-
miter

Dr. Stephen Henson (Mon 07 Apr 2014 19:53:31 EEST)

Sub-
ject

Add heartbeat extension bounds check.

if (1 + 2 + 16 > s->s3->rrec.length)            

 return 0;   

hbtype = *p++;

n2s(p, payload);

if (1 + 2 + payload + 16 > s->s3->rrec.length)  

 return 0;   

pl = p;
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Is the TLS Request  message is too short?
If it is too short, then discard the request and do not answer.
Is the TLS Request  payload string at least as long as announced by
the payload -length-field?
If not, then silently discard the request according to RFC 6520 section
4.

Source: [18, openssl-1.0.1g/ssl_t1_lib.c , lines=2597-2603]

5.5. What Can We Learn?
The author of the code who introduced the Heartbleed vulnerability in
OpenSSL is Dr. Seggelmann, a programmer who worked on the OpenSSL
project during his PhD studies. Interviewed after the incident by the
Guardian he said [19]: “I am responsible for the error, because I wrote the
code and missed the necessary validation by an oversight. Unfortunately,
this mistake also slipped through the review process and therefore made
its way into the released version.”

For me there is no doubting the sincerity of this statement. But in view of fu-
ture similar incidents, it is important to note that Heartbleed is part of a vul-
nerability class predestined for intentionally introduced weaknesses. As we
saw in the previous chapter, Heartbleed can be classified as a “CWE-502:
Deserialisation of Untrusted Data” weakness. This kind of vulnerability is
listed as potential “CWE-505: Intentional Introduced Weakness” (cf. Fig-
ure 5, “Development Concepts” [21]).

Figure 5. Development Concepts

Knowing about the efforts some public authorities undertook in weakening
international crypto-standards, the Sydney Morning Herald asked shortly
after the disclosure of Heartbleed [20]: “Is this a man who would purpose-
fully leave a gaping hole in the internet, which the US National Security
Agency could have been exploiting to spy on people’s communications?”.
Dr Seggelman denied this in an interview with Fairfax Media. He said [20]:
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“It’s tempting to assume that, after the disclosure of the spying activities of
the NSA and other agencies, but in this case it was a simple programming
error in a new feature, which unfortunately occurred in a security-relevant
area.”.

In October 2015, the Dutch government donated €500,000 to the OpenSSL
project to enforce Internet encryptions standards [22]. In a public state-
ment, Mr. van der Steur, Holland’s Minister of Security and Justice, said
that “his country opposes the idea of backdoors in encryption technologies,
considering strong encryption vital for the protection of privacy for citizens,
companies, the government, and the entire Dutch economy” [23].

One could interpret this donation as a hint that Heartbleed had been inten-
tionally introduced. But we should not forget that a missing validation is
a very common mistake. Furthermore, finding some missing lines of code
is always harder than detecting a flaw in code. This is also true for code
reviewers. Hence it is not surprising that the vulnerable code passed the
review process. In fact, there is no explicit flaw in the vulnerable code:
i.e. there are no explicit semantics in C/C++ telling that memcpy(bp, pl,
payload)  can eventually mean something like: “copy the payload string
including all secret private keys and certificates stored in memory”!

In C/C++ many things may happen behind the scenes. This makes the lan-
guage so elegant. But going back to the 1970s when C was developed: the
systems had not yet had to deal with malicious input data. In those days, the
main concern in writing computer programs was producing correct results
for a small set of valid input data: Do what is written in your program can
be well expressed in C/C++ semantics. But the situation has fundamental-
ly changed since. Once connected to the Internet, evil lurks everywhere.
Today’s programs have to deal with every imaginable input. This is why
we need programming languages that allow us to express: Do only what is
explicitly written in your program and do nothing else! - Rust is such a
language [24].

6. Could Heartbleed Have Happened With
Rust?
The code in Table 4, “Vulnerable Heartbeat code in Rust” is a reproduction
of the original C code (cf. Table 2, “Vulnerable Heartbeat code in C”) in Rust
using the same variable names and function signatures, also without any
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boundary checks. It allows us to observe how a Rust implementation would
have dealt with the missing boundary checks leading to the Heartbleed
vulnerability.

Table 4. Vulnerable Heartbeat code in Rust

fn tls1_process_heartbeat (s: Ssl) -> Result<(), isize> {

    const PADDING: usize = 16;

    let p = s.s3.rrec;

    let hbtype:u8 = p[0];

    let payload:usize = ((p[1] as usize) << 8) + p[2] as usize; 

    let mut buffer: Vec<u8> = Vec::with_capacity(1+2+payload+PADDING);

    buffer.push(TLS1_HB_RESPONSE);

    buffer.extend(p[1..1+2].iter().cloned());                   

    buffer.extend(p[3..3+payload].iter().cloned());             

    let mut rng = rand::thread_rng();                           

    buffer.extend( (0..PADDING).map(|_|rng.gen::<u8>())

   .collect::<Vec<u8>>() );

    if hbtype == TLS1_HB_REQUEST {

        let r = ssl3_write_bytes(s, TLS1_RT_HEARTBEAT, &*buffer);

        return r

    }

    Ok(())

}

Extract the payload -length in big endian format from TLS1_HB_RE-
QUEST  package.
Serialise _`payload`-length into TLS1_HB_RESPONSE .
Copy payload string. Note there has been no previous boundary
check which leads to the Heartbleed vulnerability!
Append PADDING  number of random Bytes. The padding has to be
random here to mitigate certain cryptoanalysis attacks.

How does the vulnerable Rust implementation Table 4, “Vulnerable Heart-
beat code in Rust” respond to Heartbleed exploits? Table 5, “Simulation
of Heartbleed exploit package” simulates a Heartbleed attack with a mali-
cious package. First the variable payload  is set to Ox0101 = 257 ; then
line 3 of Table 4, “Vulnerable Heartbeat code in Rust” is fed with this input:
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  buffer.extend(p[3..3+payload].iter().cloned());

3+payload  is the upper index of the slice to be copied. Since the Rrec
has only 22 elements, a payload -length of 257  is out of bounds. In the
original C code this line caused the dreaded Heartbleed vulnerability with
a Buffer-Over-Read. Table 6, “System response after Heartbleed attack”
shows the response of the Rust code: The program aborts with a panic
message. Thus the attacker is still able to trigger a deny of service attack
but no Buffer-Over-Read occurs and no data is leaked!

Table 5. Simulation of Heartbleed exploit package

    let s: Ssl = Ssl {

        s3 : Rrec{

                rrec:  &[TLS1_HB_REQUEST, 1, 1, 14, 15, 16, 17,

                         18, 19, 20, 21, 22, 23, 24, 25, 26, 27,

                         28, 29, 30, 31, 32]

        }

    };

    tls1_process_heartbeat(s).unwrap();

    }

Table 6. System response after Heartbleed attack

thread '<main>' panicked at 'assertion failed: index.end <= self.len()',

Process didn't exit successfully: `target/release/heartbeat` (exit code:

 101)

Like in the original patched C code Table 3, “Patched Heartbeat code in C”
the critical out-of-bounds conditions can be easily silently discarded with
two additional if  clauses as shown in Table 7, “Patched Heartbeat code
in Rust”.

Table 7. Patched Heartbeat code in Rust

fn tls1_process_heartbeat (s: Ssl) -> Result<(), isize> {

    const PADDING: usize = 16;

    if 1 + 2 + 16  >  s.s3.rrec.len() {return Ok(()) }           
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    let p = s.s3.rrec;

    let hbtype:u8 = p[0];

    let payload:usize = ((p[1] as usize) << 8) + p[2] as usize;

    if 1 + 2 + payload + 16  >  s.s3.rrec.len() {return Ok(()) } 

    let mut buffer: Vec<u8> = Vec::with_capacity(1+2+payload+PADDING);

    buffer.push(TLS1_HB_RESPONSE);

    buffer.extend(p[1..1+2].iter().cloned());

    buffer.extend(p[3..3+payload].iter().cloned());

    let mut rng = rand::thread_rng();

    buffer.extend( (0..PADDING).map(|_|rng.gen::<u8>())

   .collect::<Vec<u8>>() );

    if hbtype == TLS1_HB_REQUEST {

        let r = ssl3_write_bytes(s, TLS1_RT_HEARTBEAT, &*buffer);

        return r

    }

    Ok(())

}

Is the TLS Request  message too short? If it is too short, then silently
discard the request.
Is the TLS Request  payload string at least as long as announced
by the payload -length-field? If not, then silently discard the request
according to RFC 6520 section 4.

6.1. Results

The Heartbleed bug would not have been possible if OpenSSL had been
implemented in Rust. We have seen that Rust's memory management pre-
vents inter alia Buffer-Over-Read which is the origin of the Heartbleed vul-
nerability. With Rust no disastrous data leakage could have occurred as it
is impossible to read beyond any data structure. Notwithstanding this, at-
tempts to read data out of bounds ends the process by default. This means
in a Heartbleed attack scenario the impact would have been limited to a
deny of service. From a theoretical point of view the findings are not sur-
prising as they result directly from Rust's core property: memory safety.
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6.2. Suggested Improvements

In order to keep the Rust code in Table 7, “Patched Heartbeat code in Rust”
comparable to the original in C Table 3, “Patched Heartbeat code in C” no
optimisations were made. Here are some suggestions for improvement:

• For implementing complex protocols like SSL/TLS the Rust’s serialisa-
tion framework should be considered.

• Replace the Vec  data structure with Smallvec  that can be kept on the
stack.

• The serialisation of TLS1_HB_RESPONSE  should be outsourced in a proper
function returning buffer  and allowing automated tests.

• Replace return codes with own error enum  types.

7. Rust on Embedded Systems
Of particular interest when dealing with embedded systems are Rust's:
Guaranteed Memory Safety, Zero-Cost Abstractions and Iterators.

7.1. Guaranteed Memory Safety

Rust's main innovation is the introduction of new semantics defining own-
ership and borrowing. They translate to the following set of rules which
Rust’s type system enforces:

1. All resources (e.g. variables, vectors…) have a clear owner.

2. Others can borrow from the owner.

3. Owner cannot free or mutate the resource while it is borrowed.

By observing the above rules Rust regulates how resources are shared with-
in different scopes. Memory problems can only occur when a resource is
referenced by multiple pointers (aliasing) and when it is mutable at the
same time. In contrast to other languages, Rust's semantics allow the type
system to ensure at compile time that simultaneous aliasing and mutation
can never happen. As the check is performed at compile-time no run-time
code is necessary. Furthermore, Rust does not need a garbage collector:
when owned data goes out of scope it is immediately destroyed.
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Table 8. Ressource sharing in Rust

Resource sharing
type

Alias-
ing

Mu-
ta-
tion

Example

move ownership no yes let a = b

shared borrow yes no let a = &b

mutable borrow no yes let a = &mut b ;

7.2. Iterators

A very common group of programming mistakes is related to improper han-
dling of indexes especially in loops, e.g. “CWE-129: Improper Validation of
Array Index” (cf. Table 9, “Common weaknesses in C/C++ affecting mem-
ory avoidable with iterators”).

Table 9. Common weaknesses in C/C++ affecting memory avoidable with
iterators

CWE ID Name

119 Improper Restriction of Operations within the
Bounds of a Memory Buffer

125 Out-of-bounds Read

129 Improper Validation of Array Index

In addition to traditional imperative loop control structures, Rust offers ef-
ficient iteration with functional style iterators. Like in Haskel iterators are
lazy and avoid allocating memory for intermediate structures (you allocate
just when you call .collect() ).

Besides performance considerations, iterators considerably enhance the ro-
bustness and safety of programs. They enable the programmer to formulate
loop control structures and to manipulate vectors without indexes! (See ex-
ample in Table 10, “Vigenère cipher in Rust”).

Table 10. Vigenère cipher in Rust

fet p: Vec<u8> = s.into_bytes();   //plaintext

let mut c: Vec<u8> = vec![];    //ciphertext
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for (cypherb, keyb) in p.iter()

    .zip(  key.iter().cycle().take(p.len())  ) {

        c.push(*cypherb ^ *keyb as u8);

    }

It must be noted that even with iterators out of bounds-errors may occur.
Nevertheless, they should be preferred because they reduce the probability
of errors related to indexes drastically.

7.3. Zero-Cost Abstractions

It is the language design goal Zero-Cost Abstractions that makes the C/C
++ language so efficient and suitable for system programming. It means
that libraries implementing abstractions, e.g. vectors and strings, must be
designed in a way that the compiled binary is as efficient as if the program
had been written in Assembly. This is best illustrated with memory layouts:
Figure 6, “Memory layout of a Rust vector” shows a vector in Rust. Its mem-
ory layout is very similar is to a vector in C/C++.

Figure 6. Memory layout of a Rust vector

Java, also a memory safe language, enforces a uniform internal represen-
tation of data. Here a vector has 2 indirections instead of 1 compared to
Rust and C/C++ (cf. Figure 7, “Memory layout of a Java vector”). As the
data could be represented in a more efficient way in memory, we see that
Java does not prioritise the Zero-Cost-Abstraction goal.
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Figure 7. Memory layout of a Java vector

How about other data structures and overall performance? A good estima-
tion is to compare benchmarks of small and simple programs. Too complex
programs should be avoided for this purpose because variations of the pro-
grammer’s skills may bias the result. According to the “Computer Language
Benchmark Game” [25] Rust and C/C++ have similar benchmark results.

As Rust uses the LLVM framework as backend, it is available for most em-
bedded platforms.

7.4. Final evaluation
The above discussed features are only a small selection of Rust's qualities.
Not less important features like threads without data races, minimal run-
time and efficient C bindings result together in an ideal tool for secure em-
bedded system programming.
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