
SECURE PROGRAMMINGSECURE PROGRAMMING
OF RESOURCEOF RESOURCE

CONSTRAINED DEVICESCONSTRAINED DEVICES
Jens Getreu

2018-01-16

AGENDAAGENDA
1. Resource Constrained Devices
2. The Heartbleed vulnerability
3. The Rust Programming Language
4. Conclusion and recommendations

RESOURCERESOURCE
CONSTRAINED DEVICESCONSTRAINED DEVICES

DEFINITIONDEFINITION
Resource constrained device

is a computer with very limited processing and storage
capabilities, designed for low energy consumption.

Examples
Wireless Sensors
The “Things” in the Internet of Things

HARDWAREHARDWARE

Example: STM32F103C8T6 Blue-Pill

SOFTWARE ARCHITECTURESOFTWARE ARCHITECTURE

Resource Constrained Device

SPECIAL REQUIREMENTSSPECIAL REQUIREMENTS

meta-functional attributes

RESOURCE CONSTRAINED DEVICESRESOURCE CONSTRAINED DEVICES
ARE VULNERABLEARE VULNERABLE

Attacks
Mirai (2016) / IoT reaper / IoTroop / Heartbleed (2014)

Causes
RCD are as complex

Internet connectivity does not generate excess profit.

-> Devices are poorly configured and highly insecure

C/C++ do not provide memory and thread safety

THE HEARTBLEEDTHE HEARTBLEED
VULNERABILITYVULNERABILITY

MEMORY SAFETY RELATEDMEMORY SAFETY RELATED
VULNERABILITIESVULNERABILITIES

2/3 of all Linux kernel vulnerabilities are memory safety related.

CWE ID Name

120 Buffer Copy without Checking Size of Input

125 Out-of-bounds Read

126 Buffer Over-read

122 Heap-based Buffer Overflow

401 Memory Leak

THE HEARTBEAT TLS EXTENSION 1THE HEARTBEAT TLS EXTENSION 1

TLS Heartbeat protocol

THE HEARTBEAT TLS EXTENSION 2THE HEARTBEAT TLS EXTENSION 2

TLS Heartbeat protocol

THE HEARTBLEED VULNERABILITY 1THE HEARTBLEED VULNERABILITY 1

Heartbleed vunerability

THE HEARTBLEED VULNERABILITY 2THE HEARTBLEED VULNERABILITY 2

Heartbleed vunerability

VULNERABLE C CODEVULNERABLE C CODE
unsigned char *p = &s->s3->rrec.data[0], *pl;
unsigned short hbtype;
unsigned int payload;
unsigned int padding = 16;

hbtype = *p++; //<1>
n2s(p, payload); //<2>
pl = p;

//... folded lines ...

if (hbtype == TLS1_HB_REQUEST)
 {
 unsigned char *buffer, *bp;
 Cint r;

buffer = OPENSSL malloc(1 + 2 + payload + padding); //<3>

THE RUSTTHE RUST
PROGRAMMINGPROGRAMMING

LANGUAGELANGUAGE

FEATURESFEATURES
guaranteed memory safety
zero-cost abstractions
threads without data races

References: Firefox 57, Maidsafe, Parity-Bitcoin-Client

COULD HEARTBLEED HAVE HAPPENEDCOULD HEARTBLEED HAVE HAPPENED
WITH RUST?WITH RUST?

fn tls1_process_heartbeat (s: Ssl) -> Result<(), isize> {
 const PADDING: usize = 16;

 let p = s.s3.rrec;
 let hbtype:u8 = p[0];
 let payload:usize = ((p[1] as usize) << 8) + p[2] as usize; // <1>

 let mut buffer: Vec<u8> = Vec::with_capacity(1+2+payload+PADDING);
 buffer.push(TLS1_HB_RESPONSE);
 buffer.extend(p[1..1+2].iter().cloned()); // <2>
 buffer.extend(p[3..3+payload].iter().cloned()); // <3>

 let mut rng = rand::thread_rng(); // <4>
 buffer.extend((0..PADDING).map(|_|rng.gen::<u8>())
 .collect::<Vec<u8>>());

HEARTBLEED EXPLOIT PACKAGEHEARTBLEED EXPLOIT PACKAGE

SYSTEM RESPONSE AFTER HEARTBLEEDSYSTEM RESPONSE AFTER HEARTBLEED
ATTACKATTACK

 let s: Ssl = Ssl {
 s3 : Rrec{
 rrec: &[TLS1_HB_REQUEST, 1, 1, 14, 15, 16, 17,
 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,
 28, 29, 30, 31, 32]
 }
 };
 tls1_process_heartbeat(s).unwrap();
 }

 thread '<main>' panicked at 'assertion failed:
 index.end <= self.len()',
 Process didn't exit successfully:
 `target/release/heartbeat` (exit code: 101)

RESOURCE SHARING IN RUSTRESOURCE SHARING IN RUST
Resource sharing
type

Aliasing Mutation Example

move ownership no yes let a = b

shared borrow yes no let a = &b

mutable borrow no yes let a =

&mut b;

RUST OPERATING SYSTEMSRUST OPERATING SYSTEMS

TockOS versus RTFM

TOCK-OSTOCK-OS

TockOS architecture

TOCK-OS PRIMITIVESTOCK-OS PRIMITIVES
struct App {
 count: u32,
 tx_callback: Callback,
 rx_callback: Callback,
 app_read: Option<AppSlice<Shared,u8>>,
 app_write: Option<AppSlice<Shared,u8>>,
}
pub struct Driver {
 app: TakeCell<App>,
}

new_app () {
 ...
 driver.app.map(|app| {app.count = app.count + 1});
}

REAL TIME FOR THE MASSESREAL TIME FOR THE MASSES

RTFM architecture

RTFM PRIMITIVESRTFM PRIMITIVES
threshold.raise(
 &SHARED, |threshold| {
 let shared = SHARED.access(priority, threshold);
 shared.mode.set(Mode::Bounce)
 }
);

RUST IN EMBEDDED SYSTEMSRUST IN EMBEDDED SYSTEMS
Challenges

secure concurrency
(lightweight) threads
interrupt driven

“zero zero” cost abstractions
yet only few drivers available
yet only few platforms are supported
no std-library

CONCLUSION ANDCONCLUSION AND
RECOMMENDATIONRECOMMENDATION

LIMITATIONSLIMITATIONS
Rust for Resource Constrained Devices:

Technology is mature, ready for production.

only few drivers are available
only few platforms are supported

Doable, typical amount of lines of code 10k
(vs Linux Kernel 4.14: 25 Mio lines)

OPPORTUNITIESOPPORTUNITIES
Rust eradicates memory safety related vulnerabilities,

improves systematically the security of

field sensors
consumer IoT

Contribute to Free and Open Source So�ware.

THANK YOU!THANK YOU!

REFERENCESREFERENCES

ARTICLESARTICLES
1. A. Levy, B. Campbell, P. Dutta, B. Ghena, P. Levis, and P.

Pannuto, “The Case for Writing a Kernel in Rust,” in
Proceedings of APSys ’17, Mumbai, India, 2017, p. 7.

2. M. Antonakakis et al., “Understanding the Mirai Botnet,” in
Proceedings of the 26th USENIX Security Symposium,
Vancouver, 2017, pp. 1093–1110.

3. R. Clayton, “A New IoT Botnet Storm is Coming,” Check Point
Research, 19-Oct-2017. [Online]. . [Accessed: 19-Dec-
2017].

Available

https://research.checkpoint.com/new-iot-botnet-storm-coming/

PICTURE CREDITS 1PICTURE CREDITS 1
1. “File:STM32 Blue Pill perspective.jpg - STM32duino wiki.”

[Online]. [Accessed: 12-Dec-2017]

2. Eclipse IoT Working Group, “The Three So�ware Stacks
Required for IoT Architectures - IoT so�ware requirements
and how to implement them using open source technology.”
The Eclipse Foundation, Sep-2016 [Online]. .

3. A. Avižienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic
concepts and taxonomy of dependable and secure
computing,” Dependable and Secure Computing, IEEE
Transactions on, vol. 1, no. 1, pp. 11–33, 2004.

Available

Available

http://wiki.stm32duino.com/images/d/db/STM32_Blue_Pill_perspective.jpg.
https://iot.eclipse.org/resources/white-papers/Eclipse%20IoT%20White%20Paper%20-%20The%20Three%20Software%20Stacks%20Required%20for%20IoT%20Architectures.pdf

PICTURE CREDITS 2PICTURE CREDITS 2
1. T. B. Lee, “How does the Heartbleed attack work?,” Vox, 10-

Apr-2014. [Online]. . [Accessed: 14-Jan-2018].

2. “Tock Design,” [The] Tock Embedded Operating System.
[Online]. . [Accessed: 14-Dec-2017]

3. J. Aparicio, “Fearless concurrency in your microcontroller,”
Embedded in Rust. 09-May-2017 [Online]. .
[Accessed: 17-May-2017]

Available

Available

Available

https://www.vox.com/cards/heartbleed/how-does-the-heartbleed-attack-work
https://www.tockos.org/documentation/design/
http://blog.japaric.io/fearless-concurrency/

